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Abstract—The control modes of a free-flying space manipulation robot during the transporta-
tion and installation of a building element on a large space structure are considered. It is
proposed to save the working fluid of the gas-jet engines of the robot body when moving along
the trajectory by using the mobility of a manipulator with electromechanical drives for the
angular stabilization of the mechanical “robot–transported element” system. Conditions en-
suring the stable motion of the manipulator in the working area when installing the element
on the assembled structure are obtained. A stability domain is determined to select the initial
configuration of the manipulator before installing the element and its admissible change during
installation. The control algorithms are designed based on the principle of dynamic feedback
systems.
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1. INTRODUCTION

In space technology, space manipulation robots (SMRs) are used for servicing and assembling
various-purpose spacecraft in orbit. Such robots fly freely in space due to their movement system
independently of the spacecraft that delivered the robot to the destination point [1]. The feasibility
of developing this type of space robotic devices was declared at the 6th IFAC Symposium on Space
Control (1974), which was held under the leadership of Academician B.N. Petrov [2]. Currently,
there are two ways of connecting spacecraft and modules in space: direct docking and berthing
(docking by means of a manipulator) [3]. The latter term defines several operations, such as soft
docking, payload stowage in the receiving compartment of a cargo spacecraft, etc. This paper
considers the problem of attaching a building element to a large space structure (LSS) being
assembled in orbit by means of an SMR, another operation of the same type. As in [3], the mass
of the LSS element may significantly exceed that of the manipulator, whose gripper with the held
payload may be located at a significant distance from the center of gravity of the SMR body and
the entire mechanical system. The kinematic algorithm used to control the manipulator converts
control signals into the required rotational velocities of the actuators; this algorithm considers the
geometric and kinematic constraints determined by the current configuration of the manipulator.

Structurally, a freely-flying space manipulation robot (FSMR) is designed as a platform with
one or several manipulators attached. The platform is equipped with control devices and a set
of actuators that provide the required orientation and desired trajectory of the platform in outer
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space. Such SMRs are called free-flying robots in the literature [4, 5]. One of the first domestic
publications [6] presented a methodology for analyzing the dynamics of a manipulator on a moving
base and one solution to capture a payload in inertial space by means of an FSMR in the cases of
its stabilizable and non-stabilizable body.

An assembly operation performed in space includes two stages as follows. In the first stage,
an FSMR approaches the installation zone of a building element; at the end of this stage, the
robot hovers in the vicinity of the docking point of the element with an LSS. The boundary of the
working area is determined, on the one hand, by safety conditions (no possible contact between the
hovering robot and the LSS when installing the element) and, on the other, by goal attainability
conditions (the successful installation of the element with a given orientation in the required point
of the LSS) [7, 8]. The latter is the content of the second stage of the assembly operation. The first
stage of the assembly operation is implemented by means of a control system of the translational
and angular movements of the FSMR using reaction forces and torque applied by the actuators to
the robot body. The manipulator with the transported element is stationary in this stage, and its
configuration should be as close to optimal as possible [7].

The list of problems arising in the design of control systems for FSMRs was described in [1].
This paper considers those of manipulator control during the FSMR movement to the working
area and in it. When controlling an FSMR in its working area in the free-floating mode (i.e., the
angular position control system of the robot body is disabled), the challenges include the narrowing
of the working area [4, 9] and the presence of dynamic singularities [10, 11]. The dynamics and
kinematics of the mechanical structure of an FSMR in this mode are significantly complicated due
to the disturbing effect of the manipulator motions on the body position [12, 13]. Therefore, we
consider manipulator control based on the feedback principle using information about the angular
position of the robot body and estimates of the deviation of the manipulator’s endpoint from the
target point [14, 15].

We present solutions of two problems as follows. The first problem arises if it is necessary to
save the working fluid of the gas-jet engines of the robot body when moving along the trajectory.
This problem is solved using the manipulator mobility. The second problem is related to the
stabilization of the manipulator movement in the working area when installing the transported
element on the LSS.

2. THE MECHANICAL STRUCTURE OF A FREE-FLYING SPACE
MANIPULATION ROBOT: KEY FEATURES

The mechanical structure of an FSMR is a set of elements connected through joints. The main
element is the body equipped with a control system and jet engines. Multilink manipulators are
attached to the body. A gripper, a device for capturing and holding a payload during manipulation
operations of an FSMR, is rigidly fixed on the end link of each manipulator. This mechanical
structure is characterized by many degrees of freedom and the mutual influence of the movements
of its elements. The FSMR body responds to dynamic reaction forces arising from the movements
of the manipulator’s links. When controlling the configuration and angular movements in such
a mechanical system, it is necessary to consider the dynamic coupling between the body and
manipulators [15].

To illustrate the key features of its mechanical structure, we consider the plane motion of an
FSMR with one three-link manipulator [16] as one possible setup. The coordinates X0 and Y0

of the FSMR body’s center of gravity and its angle of rotation ϑ are the generalized coordinates
describing the position of the FSMR body in the inertial frame CXY whose axes are associated
with an LSS. They form the vector qK = (X0, Y0, ϑ)

T. The vector qα = (α1, α2, α3)
T consists of the

generalized coordinates of the inter-link angles that specify the manipulator’s configuration. The
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vector ρBA = (Xε, Yε)
T represents the controlled coordinates, i.e., the deviations of the endpoint of

the transported payload B = (XB , YB) from the target point A = (XA, YA) in the inertial frame:
Xε = XA −XB and Yε = YA − YB.

The plane motion of this setup is described by the equation

A(q)q̈ = M(q, u) + F (q, q̇) (1)

for the vector q = (qK , qα)
T with the following notations [15, 16]: the matrix A(q)∈R6×6 contains

blocks of symmetric matrices specifying the mass-inertia parameters of the body and manipu-
lator (A11(q)∈R3×3 and A22(q) ∈ R3×3, respectively) as well as the dynamic interaction coeffi-
cients of the body and manipulator’s links (A12(q)∈R3×3 and A21(q)∈R3×3, respectively, where
A12(q)=A21(q)); M(q, u) = (MK ,Mα)

T, where MK ∈R3 is the vector of control actions applied
to the robot body and Mα ∈R3 is the vector of control actions applied by actuators to the
manipulator’s links when feeding control voltages u(t) to the former’s inputs; finally, F (q, q̇) =
(fK(q, q̇), fα(q, q̇))

T is the vector of nonlinear disturbance functions from Coriolis and centrifugal
forces. The expressions for calculating the elements of these matrices and vectors were given in [16].

In this paper, the actuators of manipulator’s links are assumed to have DC motors with indepen-
dent excitation [16]. In the first approximation with the time constant of the motor and mechanical
nonlinearities being neglected [16, 17], the dynamics of each jth actuator (j = 1, 3) are described
by the equations

Jjipjα̈j = (kbjkaj)
−1uj(t)− k−1

aj ipjα̇j −MRj(t), j = 1, 3, (2)

where αj ∈ qα, Jj is the moment of inertia of the jth actuator reduced to the motor shaft, ipj is
the gearing ratio, MRj is the moment of dynamic load on the motor shaft from the manipulator,
and kbj and kaj are constants.

Self-braking mechanical gears [15, 16] are often used in the link actuators to reduce the energy
cost of controlling the FSMR manipulator. The self-braking property is provided by imposing an
impulse coupling on the moving link of the manipulator; as a result, α̇j = 0 and uj = 0. Due to self-
braking, the equation for αj disappears from (1), which is mathematically expressed as a decrease
(or increase) in the order of system (1) by 2× r, where r denotes the number of simultaneously
braked (or unbraked) links of the manipulator. The FSMR model (1), (2) serves to design robot
motion control algorithms in different operation modes of the manipulator [15].

When designing angular motion control algorithms for an FSMR, it is necessary to consider the
property of technical controllability, a necessary condition for the performance of the robot [18].
For an FSMR, this property means that the angular motion of the robot body and the movements
of the manipulator’s links must be controllable. In other words, when control signals are supplied to
change their positions, these changes must be implemented in a required direction and with a given
speed. It is reasonable to analyze the controllability of FSMRs based on a simplified angular motion
model of the robot mechanical system under the following assumptions [18]: for each qi, there exists
Mi with the constraint |Mi| � Mmax

i > 0, i = 1, 6; given Mj = 0, i, j = 1, 6, j �= i, at a time instant
t = t0 and qi(t) = q̇i(t) = q̈i(t) = 0 (t < t∗), the desired response to Mmax

i > 0 is qi(t) � 0 at time
instants t > t∗; the velocities q̇ are small enough to nullify the terms of the full motion model that
depend on the products of q̇; the motion equations of the model can be linearized with respect to
the position q = q∗, where q∗i = const, i = 1, 6.

The angular motion model linearized in the position q∗ has the form

A(q∗)Δq̈ = P (q∗)M(q), (3)

where Δq = q− q∗, A(q∗) is a positive definite matrix, and the matrix P (q∗) relates the generalized
forces to the vector of control forces and moments [18].
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The FSMR with model (3) is controllable in Δqi i = 1, 6 in the position q = q∗ if under the zero
initial conditions Δqi(t) = Δq̇i(t) = Δq̈i(t) = 0 ∀t < t0, supplying the maximum control |Mi(t)| =
Mmax

i ∀t � t0 at the time instant t0 generates an acceleration Δq̈i(t) � ηi �= 0 of the same sign
as Mi(t) irrespective of the other control actions Mi(t) (j = 1, 6; j �= i), where ηi are known charac-
teristic values of the mechanical system. According to the theorem proved in [18], the controllability
of the FSMR in the neighborhood of the point q = q∗ is determined only by the design parameters
of the robot’s mechanical system and not by the vector of control constraints Mmax.

3. TRAJECTORY MOTION CONTROL OF A FREE-FLYING SPACE
MANIPULATION ROBOT

Consider a section of the FSMR trajectory that starts when turning the cruise engine off and
ends when reaching the boundary of the manipulator’s working area. On this section, the FSMR
motion control system must eliminate the residual lateral velocity and the lateral deviation of the
robot from the line of sight as well as stabilize the angular position of its body. If gas-jet engines
are used as actuators, the problem is to reduce the consumption of the onboard working fluid of
the engines. This problem will be solved for control design by the joint use of gas-jet nozzles and
torque actuators of the manipulator. For brevity, such control will be referred to as cost-efficient
control.

When the FSMR with the transported element of the LSS moves along the trajectory, its ma-
nipulators must be fixed in a position that aligns the center of gravity of the robot’s mechanical
system with the center of application of the control forces [7]. The manipulator with the trans-
ported element is stationary, and the trajectory and angular motion of the FSMR are controlled
using basic algorithms that form the control actions Mϑ applied to the robot body from gas-jet
nozzles. Under cost-efficient control on the considered trajectory section, we propose to provide
the limited mobility of the manipulator. In this case, the required angular stabilization of the body
is implemented through motion exchange between the robot body and the manipulator’s links by
applying control torques from the electromechanical actuators of the manipulator, the electrical
energy of which can be recovered. Due to restrictions on the admissible movements of the manip-
ulator’s links to control the angular position of the FSMR body, the angles of rotation of the links
may reach the limit values, making further control by the electromechanical method impossible.
When restoring the initial configuration of the manipulator, the required angular orientation of the
body is provided by means of gas-jet nozzles. For brevity, this restoration process will be called
the manipulator’s unloading mode.

The following features must be considered when forming cost-efficient control algorithms: there
are bounded domains of varying the coordinates of the manipulator’s links (|αi(t)| � αimax,
|α̇i(t)| � α̇imax); the deviation of the manipulator’s links from the initial position displaces the
FSMR’s center of gravity relative to the center of application of the forces and, therefore, is a
parametric disturbance in the robot orientation system; gas-jet actuators are relay elements, and
the torques of electromechanical actuators are bounded; the conditions of technical controllability
by the vector qα hold in the entire domain of varying the coordinates of system (1).

Let uϑ(ϑ, ϑ̇, t) be the basic orientation control algorithms for the FSMR and uα(α, t) be the
manipulator’s configuration control algorithms. In the case of cost-efficient control, initially imple-
mented by the control action Mα1 from the arm link actuator only, the FSMR motion equations of
motion of the SCMR have the form

A1(q)q̈1 = Fq + F d
q , (4)

where q1 = (ϑ, α1,X0, Y0)
T, Fq = (0,Mα1, 0, Fy)

T is the vector of control actions used, F d
q =

(Md
ϑ , 0, 0, 0)

T is the vector of disturbances considered, A1(q) = [aij(α1, λ)] is a symmetric matrix,
and λ is the vector of the parameters of the FSMR and LSS element.
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The coordinate ϑ varies according to the solution of equation (4) of the form

ϑ̈ = k0(kαMα1 + kdM
d
ϑ + kyFy), (5)

where k0 = (det[A1(q)])
−1; kα(α1, λ) = −D21q is the efficiency coefficient of Mα1 when applied to ϑ,

representing the algebraic complement of the element a21(q) for det[A1(q)]; kd(α1, λ) = D11(q) is the
efficiency coefficient of the exogenous disturbance Md

ϑ on ϑ, representing the algebraic complement
of the element a11(q) for det[A1(q)]; finally, ky(α1, λ) = −D41(q) is the efficiency coefficient of the
control channel Fy, representing the algebraic complement of the element a41(q) for det[A1(q)].

We construct the stabilizing control action Mα1 for the coordinate ϑ in the form

Mα1[uα1(t)] = −k̃0kA(ϑ+ kϑ̇ϑ̇), (6)

where kA = (kmkb)
−1 is the static gain of the actuator; k̃0 is a tunable parameter of the control

algorithm uα1(t) (if necessary); kϑ̇ is a constant.

If the control action (6) is implementable, then the linear part of the basic algorithm is designed
to ensure stability and the desired quality of the motion (5). Considering (6), let us write (5) as

ϑ̈+ kAkϑ̇k̃0k̄α(α1, λ)ϑ̇ + kAk̃0k̄α(α1, λ)ϑ = M̄d
Σ(α1, λ, t), (7)

where k̄α(α1, λ) = k0kα(α1, λ) is the reduced efficiency coefficient of the control action Mα1 (ac-
cording to the technical implementability theorem and [18], this coefficient satisfies the condi-
tion k̄α(α1, λ) > 0∀(α1, α2) ∈ (0,±π)); M̄d

Σ(α1, λ, t) = k̄d(α1, λ)M
d
ϑ + k̄y(α1, λ)Fy is the resulting

reduced disturbing torque; finally, k̄y(α1, λ) = k0ky(α1, λ) and k̄d(α1, λ) = k0kd(α1, λ).

If the parameters λ are known and α1(t) is measured, we propose an algorithm to change k0(t)
in (6) based on the stationarity condition

k̃0(t)k̄α(α1, λ) = K, (8)

where K is a constant satisfying the desired quality of motion for ϑ.

Under (8), the coefficients in (7) are constant, which ensures the stability of motion for ϑ. For
the motion (7) with (8), the required static accuracy |ϑ(t)| � ϑmin of FSMR orientation, where

ϑmin is a given value, is achieved by fulfilling the condition kA � (Kϑmin)
−1

[
Md

Σ(α1, λ, t)
]
max

.

The control action (5) is implemented by supplying the voltage uα1(t) to the input of the
electrical actuator (2) of the manipulator’s shoulder link according to the algorithm [16]

uα1(t) = − k̃0
ig

[(
1 +

kϑ̇
kmJm

)
ϑ+ (kmJm)−1

∫
ϑdt+ kϑ̇ϑ̇+

kbJL

k̃0Jm
α̇1

]
, (9)

where ML ≈ −JLα̈1 and JL is the moment of inertia of the load reduced to the shoulder joint.

The algorithm (9) is used until reaching the domain |ϑ(t)| < ϑmin by ϑ. The system then
switches to a nonlinear algorithm containing nonlinearities (dead zone and hysteresis) to organize
highly cost-efficient unilateral auto oscillations in this coordinate domain.

Generally, the residual nonzero initial conditions ϑ0, ϑ̇0 and the forced motions generated by
exogenous disturbances are damped using the algorithm (9) by changing the coordinates αi(t).
The damping process ends either with steady-state small oscillations in the domain |ϑ(t)| � ϑmin

or with αi(t) reaching the constraints. In the latter case, it becomes necessary to return the
manipulator to the initial position (the unloading mode) in order to implement the orientation
control method for the FSMR using its mobility again. In the unloading mode, the manipulator’s
links are transferred to the initial state, αi(t) → α∗

i , under the action of its control Mα(uα) while
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Fig. 1. Limit cycles in the manipulator’s unloading mode.

keeping ϑ in the domain |ϑ(t)| � ϑmin. The angular stabilization of the body is implemented by
the torque Mϑ(uϑ) � Mmax

ϑ , where Mmax
ϑ is the existing constraint. In this mode, robot control is

a multilink control problem in an essentially nonlinear system with control constraints.

When describing the unloading mode in (4), it is necessary to assume

Fq = (Mϑ,Mα1, 0, Fy)
T.

Then the behavior of the coordinate ϑ is described by the equation

ϑ̈ = k̄Mϑ(α1, λ)Mϑ(uϑ) + fp(α1, λ), (10)

where k̄Mϑ(α1, λ) is the efficiency coefficient of Mϑ(uϑ), calculated by analogy with (5); fp(α1, λ) =
M̄d

Σ(α1, λ, t) + k̄α(α1, λ)Mα1 are disturbances for |ϑ(t)| � ϑmin.

When designing control algorithms for the coordinates ϑ and α, it is necessary to consider
the contradictory requirements for the operation of each subsystem. Minimizing the roll time
of the manipulator’s link that has reached the constraint implies using the maximum achievable
speeds α̇1max of the output shaft of the actuator (under the existing constraints). However, the
disturbances fp(α1, λ) arising in the control subsystem ϑ under the constraint Mmax

ϑ may violate
the orientation accuracy requirements. In this case, the roll rate of the manipulator’s link should be
bounded by a value smaller than α̇1max. It is reasonable to use the phase plane method based on (10)
to determine the optimal controller parameters ensuring the desired dynamics in the unloading
mode.

Let the basic nonlinear algorithm for stabilizing the angular position of the FSMR uϑ(ϑ, ϑ̇, t)
generate unilateral auto oscillations represented on the phase plane (ϑ, ϑ̇) as a limit cycle Γ0 (Fig. 1).
In the unloading mode of the manipulator, under the action of fp(α1, λ), the undisturbed cycle Γ0

is transformed into another stable cycle Γ1. The cycle Γ1 is formed so that for the maximum
possible value fp,max(α1, λ), its phase trajectory would not cross the limits of the admissible devi-
ations of the controlled coordinates (|ϑ| = ϑp, |ϑ̇| = ϑ̇p); see the dashed box in Fig. 1. When the
unloading process is complete, the original cycle is restored (Γ1 → Γ0), and a return to the control
action Mα(uα) follows.
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Simultaneously with FSMR orientation control, the correction system continues to work for the
transverse displacements of the body: when the deviation exceeds Y0 = Y0min, it generates the
control action Fy in (4). Since the mechanical structure of the FSMR has an unbalanced configura-
tion, the disturbing torque Md

Fy = Fyxc arises in the orientation control channel; its compensation
by the action of Mα(uα) may be insufficient. Therefore, when Fy acts in the orientation control
system, it is necessary to provide an automatic transition to the efficient nonlinear control Mϑ(uϑ).

4. MANIPULATOR CONTROL WHEN INSTALLING AN ELEMENT ON AN OBJECT

Consider FSMR manipulator control in the soft installation mode of a building element on an
LSS in the working area. Here, the motion of the robot body when using manipulator’s self-braking
actuators does not change qα. The controlled motion of each link must not change the values of other
interlink angles. This property, characteristic of the class of mechanical systems under considera-
tion, holds under the conditions of technical controllability (if satisfied during the design process).
These conditions allow neglecting the mutual influence of joints and, consequently, treating the
matrix A22 as a diagonal one. For t � t0, where t0 is the time of entering the working area, the
coordinates of the FSMR mechanical system with the transported element of the LSS change with
sufficiently small rates. Hence, linear mathematical models can be used to design algorithms [15].
The terms of the functions fK(q, q̇) and fα(q, q̇) contain products of small values (q̇iq̇j), i, j = 1, 6;
hence, their contribution to FSMR dynamics can be neglected in the first approximation. In the
presence of all these features, the motion of (1) can be approximately described by

Ar(q)q̈ = M(q, u), (11)

where the matrix Ar(q) consists of the blocks Ar,11 = A11, Ar,12 = A12, Ar21 = 0 and q̇(t0) = 0.

When the coordinates Xε and Yε are selected as the controlled ones, manipulator control by the
coordinates qα becomes open-loop and it is possible to reach the domain |Xε| � Xε,min, |Yε| � Yε,min

by purposefully varying qα(t), where Xε,min and Yε,min are given values. Using only the rotating
degrees of freedom of the mechanical FSMR system allows neglecting the displacement of the
body’s center of gravity and treating q1 and q2 as constants. If the control actions by α1 and α2

are formed in the soft installation mode of the element and the manipulator’s end link is fixed
(α3 is a constant), then the motion for Xε and Yε based on (11) is described by

Ẍε = d11(q)Mα1 + d12(q)Mα2,

Ÿε = d21(q)Mα1 + d22(q)Mα2,
(12)

where

d11(q) = bΔa
−1
44

[
(bm − a223)(a14a33 − a13a34) + b3(a24a33 − a23a34)

]
,

d12(q) = bΔa
−1
55

[
(bm − a223)(a15a33 − a13a35) + b3(a25a33 − a23a35)

]
,

d21(q) = bΔa
−1
44

[
(bm − a213)(a24a33 − a23a34) + b3(a14a33 − a13a34)

]
,

d22(q) = bΔa
−1
55

[
(bm − a213)(a25a33 − a23a35) + b3(a15a33 − a13a35)

]
,

bΔ =
[
a33mS(bm − a213 − a223)

]−1
, bm = a33m

2
S, b3 = a13a23, and mS denotes the FSMR mass.

The coefficients dij(q), i, j = 1, 2, vary due to their dependence on the angular position of the
FSMR body through ϑ and on the joint angles α1 and α2. During manipulator control in the
working area, its links may take positions in which dij(q) < 0, causing instability for Xε and Yε.
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Fig. 2. The effect of the angle ϑ on the boundaries of the stability domain.

If the information about Xε, Yε, Ẋε, and Ẏε is available, then stable control by Xε and Yε is ensured
by the PD algorithms

Mα1 = k0x(k1xXε + k2xẊε),

Mα2 = k0y(k1yYε + k2yẎε),
(13)

where the gains kjx, kjy (j = 0, 2) must be appropriately chosen to stabilize the trivial solution
of system (12), (13). These stability requirements are defined when analyzing the characteristic
equation

4∑
j=0

cjλ
j = 0,

where

c0 = Δdk1xk1y; c1 = Δd(k1yk2x + k1xk2y);

c2 = Δdk2xk2y − (k1xk0xd11 + k2xk0yd22);

c3 = −(k1yk0xd11 + k2yk0yd22); c4 = 1;

Δd = k0xk0y(d11d22 − d12d21).

The necessary stability condition cj > 0 ∀j = 0, 4 holds for Δd > 0 and sgnd11 �= sgnk0x, sgnd22 �=
sgnk0y. The condition Δd > 0 does not depend on the gains kjx, kjy, j = 0, 2, and is satisfied under
the relations

(sgnd11 �= sgnd22 ∧ sgnd12 = sgnd21) ∨ (sgnd11 = sgnd22 ∧ sgnd12 �= sgnd21);

(sgnd11 = sgnd22 ∧ sgnd12 = sgnd21 ∧ |d11d22| > |d12d21|)
∨ (sgnd11 �= sgnd22 ∧ sgnd12 �= sgnd21 ∧ |d11d22| < |d12d21|).

(14)
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If the variations of dij(q) do not violate the condition Δd > 0, then the stability conditions are
satisfied by varying the gains in (13). If α1 and α2 are measurable during FSMR manipulator
control, then dij(q) can be calculated and the stability conditions can be maintained by tuning the
gains in (13) at appropriate time instants.

Based on (14), it is reasonable to form the stability domain in the coordinates α1 and α2.
Information about this domain serves to choose the initial configuration of the manipulator before
the element installation and the admissible variation of α1 and α2 during the installation process.
The topology of the stability domain depends on the values ϑ and α3, which determine the relative
position of the body and the element to be installed. As one example with the data from [15],
Fig. 2 shows a segment of the stability domain for α3 = −0.2π and three initial positions of the
FSMR body (ϑ = [−0.35; 0; 0.35]). Here, the point F0 indicates the initial position of the links:
α1(t0) = −1.26 and α2(t0) = 1.58. According to Fig. 2, increasing the positive value of the angle ϑ
reduces the stability domain where Δd > 0. (In this figure, the stability domain is indicated by
DD > 0.) This fact decreases the range of varying the angles α1 and α2 when the element is
installed by the manipulator.

Note that the variation of the angle α3 (the gripper’s position) has a smaller effect on the
boundaries of the stability domain compared to the variation of the angular position of the FSMR
body.

5. CONCLUSIONS

The features of the mechanical structure of the FSMR have been analyzed, and a solution has
been proposed to reduce the consumption of the onboard working fluid of gas-jet engines during
transportation of the LSS element and during its assembly in orbit. This solution involves the
mobility of the manipulator to stabilize the angular position of the FSMR body. On separate
sections of the FSMR motion trajectory, the control is jointly implemented by two types of actua-
tors: gas-jet nozzles and torque electromechanical actuators of the manipulator. The mathematical
models of FSMR motion used in this paper are convenient for designing control algorithms based
on the feedback principle and studying the manipulation processes of the FSMR. The control al-
gorithms of the FSMR satisfy the conditions of technical controllability and maintain the required
configuration of the mechanical structure of the robot during the transportation and installation
of the LSS element. Under sufficiently small velocities of the manipulator’s joints, the algorithms
presented above provide in the working area a soft installation of the element at a given point
of the LSS. The stability domain in the space of the angles of the manipulator’s joints has to be
determined in advance in order to choose the initial configuration of the robot’s mechanical system
before the manipulation operation and the range of these angles during the operation that ensures
stable motion.
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